1,607 research outputs found

    Ram extrusion force for a frictional plastic material: model prediction and application to cement paste

    No full text
    the original publication is available at http://www.springerlink.com/content/pn3034u81144458g/International audienceWe developed a model to predict the ram extrusion force of frictional plastic materials such as cement-based pastes. The extrusion of cement-based materials has already been studied, but the interaction between shaping force and paste behaviour still have to be understood. Our model is based on the plastic frictional behaviour of cement-based materials and integrates the physical mechanisms that govern material extrusion flow and extrusion force increase. When the process starts, a pressure gradient is created in the extruder due to wall friction of the paste that is submitted to plug flow. It induces a consolidation of the material. As a result, a large increase of extrusion force appears. A Coulomb law is used to model cement-based materials, which is considered as consolidating granular media. Such modelling is compared with experimental results. Tests were carried out on extrudible cement pastes. Modelling and experimental results are in good agreement

    Caractérisation rhéologique et tribologique d'un matériau viscoplastique à l'aide d'un essai de back-extrusion

    No full text
    National audienceUne nouvelle méthode d'analyse rhéologique et tribologique est développée en exploitant l'écoulement de back-extrusion. L'utilisation des courbes "effort d'extrusion en fonction du déplacement du cylindre intérieur" permet d'identifier les caractéristiques rhéologiques et tribologiques du fluide testé à partir des résultats de tests réalisés avec différentes vitesses de pénétration du cylindre intérieur et différentes configurations géométriques. Dans le cadre de l'étude de fluides complexes incompressibles, tels que les fluides d'Herschell-Bulkley frottant, la méthode aboutit à la construction d'un rhéogramme équivalent tracé à partir d'essais caractérisés par différents taux de déformation moyens. Le comportement tribologique peut être identifié en modifiant les conditions de frottement à la paroi en variant la rugosité des surfaces. La méthode est appliquée aux cas de suspensions concentrées huile/sucre et plasticine. Les comportements rhéologiques et tribologiques sont identifiés et comparés aux résultats obtenus avec la rhéométrie traditionnelle

    Validation of GATE 6.1 for targeted radiotherapy of metastic melanoma using 131I-labeled benzamide

    Get PDF
    International audienceThe GATE 6.1 Monte Carlo simulation platform based on the GEANT4 toolkit is in constant improvement for dosimetric calculations. Here, we explore its use for calculating internal absorbed dose distribution in mice for the treatment of malignant melanoma after injection of a new specific radiopharmaceutical labeled with iodine 131. We estimate the dosimetric accuracy of GATE 6.1, by calculating first S values and by comparing them and absorbed doses to organswith EGSnrc for a digital mouse phantom and a CT scan based mouse phantom

    Spin-dependent correlation in two-dimensional electron liquids at arbitrary degeneracy and spin-polarization: CHNC approach

    Full text link
    We apply the classical mapping technique developed recently by Dharma-wardana and Perrot for a study of the uniform two-dimensional electron system at arbitrary degeneracy and spin-polarization. Pair distribution functions, structure factors, the Helmhotz free energy, and the compressibility are calculated for a wide range of parameters. It is shown that at low temperatures T/ T_F <0.1, T_F being the Fermi temperature, our results almost reduce to those of zero-temperature analyses. In the region T/ T_F >= 1, the finite temperature effects become considerable at high densities for all spin-polarizations. We find that, in our approximation without bridge functions, the finite temperature electron system in two dimensions remains to be paramagnetic fluid until the Wigner crystallization density. Our results are compared with those of three-dimensional system and indicated are the similarities in temperature, spin-polarization, and density dependencies of many physical properties.Comment: 8 pages, 9 figure

    The 2-D electron gas at arbitrary spin polarizations and arbitrary coupling strengths: Exchange-correlation energies, distribution functions and spin-polarized phases

    Full text link
    We use a recent approach [Phys. Rev. Letters, {\bf 84}, 959 (2000)] for including Coulomb interactions in quantum systems via a classical mapping of the pair-distribution functions (PDFs) for a study of the 2-D electron gas. As in the 3-D case, the ``quantum temperature'' T_q of a classical 2-D Coulomb fluid which has the same correlation energy as the quantum fluid is determined as a function of the density parameter r_s. Spin-dependent exchange-correlation energies are reported. Comparisons of the spin-dependent pair-distributions and other calculated properties with any available 2-D quantum Monte Carlo (QMC) results show excellent agreement, strongly favouring more recent QMC data. The interesting novel physics brought to light by this study are: (a) the independently determined quantum-temperatures for 3-D and 2-D are found to be approximately the same, (i.e, universal) function of the classical coupling constant Gamma. (b) the coupling constant Gamma increases rapidly with r_s in 2-D, making it comparatively more coupled than in 3-D; the stronger coupling in 2-D requires bridge corrections to the hyper- netted-chain method which is adequate in 3-D; (c) the Helmholtz free energy of spin-polarized and unpolarized phases have been calculated. The existence of a spin-polarized 2-D liquid near r_s = 30, is found to be a marginal possibility. These results pertain to clean uniform 2-D electron systems.Comment: This paper replaces the cond-mat/0109228 submision; the new version include s more accurate numerical evaluation of the Helmholtz energies of the para- and ferromagentic 2D fluides at finite temperatures. (Paper accepted for publication in Phys. Rev. Lett.

    The performance of the LHCf detector for hadronic showers

    Full text link
    The Large Hadron Collider forward (LHCf) experiment has been designed to use the LHC to benchmark the hadronic interaction models used in cosmic-ray physics. The LHCf experiment measures neutral particles emitted in the very forward region of LHC collisions. In this paper, the performances of the LHCf detectors for hadronic showers was studied with MC simulations and beam tests. The detection efficiency for neutrons is from 60% to 70% above 500 GeV. The energy resolutions are about 40% and the position resolution is 0.1 to 1.3mm depend on the incident energy for neutrons. The energy scale determined by the MC simulations and the validity of the MC simulations were examined using 350 GeV proton beams at the CERN-SPS.Comment: 15pages, 19 figure

    Structure Factor and Electronic Structure of Compressed Liquid Rubidium

    Full text link
    We have applied the quantal hypernetted-chain equations in combination with the Rosenfeld bridge-functional to calculate the atomic and the electronic structure of compressed liquid-rubidium under high pressure (0.2, 2.5, 3.9, and 6.1 GPa); the calculated structure factors are in good agreement with experimental results measured by Tsuji et al. along the melting curve. We found that the Rb-pseudoatom remains under these high pressures almost unchanged with respect to the pseudoatom at room pressure; thus, the effective ion-ion interaction is practically the same for all pressure-values. We observe that all structure factors calculated for this pressure-variation coincide almost into a single curve if wavenumbers are scaled in units of the Wigner-Seitz radius aa although no corresponding scaling feature is observed in the effective ion-ion interaction.This scaling property of the structure factors signifies that the compression in liquid-rubidium is uniform with increasing pressure; in absolute Q-values this means that the first peak-position (Q1Q_1) of the structure factor increases proportionally to V1/3V^{-1/3} (VV being the specific volume per ion), as was experimentally observed by Tsuji et al.Comment: 18 pages, 11 figure

    The Path Integral Monte Carlo Calculation of Electronic Forces

    Full text link
    We describe a method to evaluate electronic forces by Path Integral Monte Carlo (PIMC). Electronic correlations, as well as thermal effects, are included naturally in this method. For fermions, a restricted approach is used to avoid the ``sign'' problem. The PIMC force estimator is local and has a finite variance. We applied this method to determine the bond length of H2_2 and the chemical reaction barrier of H+H2_2\longrightarrow H2_2+H. At low temperature, good agreement is obtained with ground state calculations. We studied the proton-proton interaction in an electron gas as a simple model for hydrogen impurities in metals. We calculated the force between the two protons at two electronic densities corresponding to Na (rs=3.93r_s=3.93) and Al (rs=2.07r_s=2.07) using a supercell with 38 electrons. The result is compared to previous calculations. We also studied the effect of temperature on the proton-proton interaction. At very high temperature, our result agrees with the Debye screening of electrons. As temperature decreases, the Debye theory fails both because of the strong degeneracy of electrons and most importantly, the formation of electronic bound states around the protons.Comment: 18 pages, 10 figure

    Measurement of forward neutral pion transverse momentum spectra for s\sqrt{s} = 7TeV proton-proton collisions at LHC

    Full text link
    The inclusive production rate of neutral pions in the rapidity range greater than y=8.9y=8.9 has been measured by the Large Hadron Collider forward (LHCf) experiment during LHC s=7\sqrt{s}=7\,TeV proton-proton collision operation in early 2010. This paper presents the transverse momentum spectra of the neutral pions. The spectra from two independent LHCf detectors are consistent with each other and serve as a cross check of the data. The transverse momentum spectra are also compared with the predictions of several hadronic interaction models that are often used for high energy particle physics and for modeling ultra-high-energy cosmic-ray showers.Comment: 18 Pages, 10 figures, submitted to Phys. Rev.
    corecore